Copied to
clipboard

G = C62.74D4order 288 = 25·32

58th non-split extension by C62 of D4 acting via D4/C2=C22

metabelian, supersoluble, monomial

Aliases: C62.74D4, (C3×D4).43D6, (C3×Q8).67D6, (C3×C12).175D4, (C2×C12).162D6, C3225(C4○D8), C327D811C2, C12.59D66C2, C37(Q8.13D6), C327Q1611C2, C3211SD1611C2, C329SD1611C2, C12.135(C3⋊D4), (C6×C12).154C22, (C3×C12).108C23, C12.104(C22×S3), C4.32(C327D4), C12⋊S3.32C22, C324C8.31C22, (D4×C32).28C22, C22.1(C327D4), (Q8×C32).29C22, C324Q8.32C22, (C3×C4○D4)⋊6S3, D4.8(C2×C3⋊S3), C4○D44(C3⋊S3), Q8.13(C2×C3⋊S3), (C3×C6).294(C2×D4), (C32×C4○D4)⋊4C2, C6.135(C2×C3⋊D4), C4.18(C22×C3⋊S3), (C2×C324C8)⋊13C2, (C2×C6).27(C3⋊D4), C2.24(C2×C327D4), (C2×C4).59(C2×C3⋊S3), SmallGroup(288,807)

Series: Derived Chief Lower central Upper central

C1C3×C12 — C62.74D4
C1C3C32C3×C6C3×C12C12⋊S3C12.59D6 — C62.74D4
C32C3×C6C3×C12 — C62.74D4
C1C4C2×C4C4○D4

Generators and relations for C62.74D4
 G = < a,b,c,d | a6=b6=d2=1, c4=b3, ab=ba, cac-1=a-1, dad=a-1b3, cbc-1=dbd=b-1, dcd=b3c3 >

Subgroups: 644 in 186 conjugacy classes, 65 normal (29 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, C32, Dic3, C12, C12, D6, C2×C6, C2×C6, C2×C8, D8, SD16, Q16, C4○D4, C4○D4, C3⋊S3, C3×C6, C3×C6, C3⋊C8, Dic6, C4×S3, D12, C3⋊D4, C2×C12, C2×C12, C3×D4, C3×D4, C3×Q8, C4○D8, C3⋊Dic3, C3×C12, C3×C12, C2×C3⋊S3, C62, C62, C2×C3⋊C8, D4⋊S3, D4.S3, Q82S3, C3⋊Q16, C4○D12, C3×C4○D4, C324C8, C324Q8, C4×C3⋊S3, C12⋊S3, C327D4, C6×C12, C6×C12, D4×C32, D4×C32, Q8×C32, Q8.13D6, C2×C324C8, C327D8, C329SD16, C3211SD16, C327Q16, C12.59D6, C32×C4○D4, C62.74D4
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C3⋊S3, C3⋊D4, C22×S3, C4○D8, C2×C3⋊S3, C2×C3⋊D4, C327D4, C22×C3⋊S3, Q8.13D6, C2×C327D4, C62.74D4

Smallest permutation representation of C62.74D4
On 144 points
Generators in S144
(1 82 94 45 68 57)(2 58 69 46 95 83)(3 84 96 47 70 59)(4 60 71 48 89 85)(5 86 90 41 72 61)(6 62 65 42 91 87)(7 88 92 43 66 63)(8 64 67 44 93 81)(9 117 49 106 21 135)(10 136 22 107 50 118)(11 119 51 108 23 129)(12 130 24 109 52 120)(13 113 53 110 17 131)(14 132 18 111 54 114)(15 115 55 112 19 133)(16 134 20 105 56 116)(25 74 139 99 36 123)(26 124 37 100 140 75)(27 76 141 101 38 125)(28 126 39 102 142 77)(29 78 143 103 40 127)(30 128 33 104 144 79)(31 80 137 97 34 121)(32 122 35 98 138 73)
(1 103 118 5 99 114)(2 115 100 6 119 104)(3 97 120 7 101 116)(4 117 102 8 113 98)(9 39 81 13 35 85)(10 86 36 14 82 40)(11 33 83 15 37 87)(12 88 38 16 84 34)(17 32 48 21 28 44)(18 45 29 22 41 25)(19 26 42 23 30 46)(20 47 31 24 43 27)(49 142 64 53 138 60)(50 61 139 54 57 143)(51 144 58 55 140 62)(52 63 141 56 59 137)(65 108 79 69 112 75)(66 76 105 70 80 109)(67 110 73 71 106 77)(68 78 107 72 74 111)(89 135 126 93 131 122)(90 123 132 94 127 136)(91 129 128 95 133 124)(92 125 134 96 121 130)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)
(2 8)(3 7)(4 6)(9 144)(10 143)(11 142)(12 141)(13 140)(14 139)(15 138)(16 137)(17 26)(18 25)(19 32)(20 31)(21 30)(22 29)(23 28)(24 27)(33 49)(34 56)(35 55)(36 54)(37 53)(38 52)(39 51)(40 50)(41 45)(42 44)(46 48)(57 86)(58 85)(59 84)(60 83)(61 82)(62 81)(63 88)(64 87)(65 89)(66 96)(67 95)(68 94)(69 93)(70 92)(71 91)(72 90)(73 129)(74 136)(75 135)(76 134)(77 133)(78 132)(79 131)(80 130)(97 120)(98 119)(99 118)(100 117)(101 116)(102 115)(103 114)(104 113)(105 125)(106 124)(107 123)(108 122)(109 121)(110 128)(111 127)(112 126)

G:=sub<Sym(144)| (1,82,94,45,68,57)(2,58,69,46,95,83)(3,84,96,47,70,59)(4,60,71,48,89,85)(5,86,90,41,72,61)(6,62,65,42,91,87)(7,88,92,43,66,63)(8,64,67,44,93,81)(9,117,49,106,21,135)(10,136,22,107,50,118)(11,119,51,108,23,129)(12,130,24,109,52,120)(13,113,53,110,17,131)(14,132,18,111,54,114)(15,115,55,112,19,133)(16,134,20,105,56,116)(25,74,139,99,36,123)(26,124,37,100,140,75)(27,76,141,101,38,125)(28,126,39,102,142,77)(29,78,143,103,40,127)(30,128,33,104,144,79)(31,80,137,97,34,121)(32,122,35,98,138,73), (1,103,118,5,99,114)(2,115,100,6,119,104)(3,97,120,7,101,116)(4,117,102,8,113,98)(9,39,81,13,35,85)(10,86,36,14,82,40)(11,33,83,15,37,87)(12,88,38,16,84,34)(17,32,48,21,28,44)(18,45,29,22,41,25)(19,26,42,23,30,46)(20,47,31,24,43,27)(49,142,64,53,138,60)(50,61,139,54,57,143)(51,144,58,55,140,62)(52,63,141,56,59,137)(65,108,79,69,112,75)(66,76,105,70,80,109)(67,110,73,71,106,77)(68,78,107,72,74,111)(89,135,126,93,131,122)(90,123,132,94,127,136)(91,129,128,95,133,124)(92,125,134,96,121,130), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144), (2,8)(3,7)(4,6)(9,144)(10,143)(11,142)(12,141)(13,140)(14,139)(15,138)(16,137)(17,26)(18,25)(19,32)(20,31)(21,30)(22,29)(23,28)(24,27)(33,49)(34,56)(35,55)(36,54)(37,53)(38,52)(39,51)(40,50)(41,45)(42,44)(46,48)(57,86)(58,85)(59,84)(60,83)(61,82)(62,81)(63,88)(64,87)(65,89)(66,96)(67,95)(68,94)(69,93)(70,92)(71,91)(72,90)(73,129)(74,136)(75,135)(76,134)(77,133)(78,132)(79,131)(80,130)(97,120)(98,119)(99,118)(100,117)(101,116)(102,115)(103,114)(104,113)(105,125)(106,124)(107,123)(108,122)(109,121)(110,128)(111,127)(112,126)>;

G:=Group( (1,82,94,45,68,57)(2,58,69,46,95,83)(3,84,96,47,70,59)(4,60,71,48,89,85)(5,86,90,41,72,61)(6,62,65,42,91,87)(7,88,92,43,66,63)(8,64,67,44,93,81)(9,117,49,106,21,135)(10,136,22,107,50,118)(11,119,51,108,23,129)(12,130,24,109,52,120)(13,113,53,110,17,131)(14,132,18,111,54,114)(15,115,55,112,19,133)(16,134,20,105,56,116)(25,74,139,99,36,123)(26,124,37,100,140,75)(27,76,141,101,38,125)(28,126,39,102,142,77)(29,78,143,103,40,127)(30,128,33,104,144,79)(31,80,137,97,34,121)(32,122,35,98,138,73), (1,103,118,5,99,114)(2,115,100,6,119,104)(3,97,120,7,101,116)(4,117,102,8,113,98)(9,39,81,13,35,85)(10,86,36,14,82,40)(11,33,83,15,37,87)(12,88,38,16,84,34)(17,32,48,21,28,44)(18,45,29,22,41,25)(19,26,42,23,30,46)(20,47,31,24,43,27)(49,142,64,53,138,60)(50,61,139,54,57,143)(51,144,58,55,140,62)(52,63,141,56,59,137)(65,108,79,69,112,75)(66,76,105,70,80,109)(67,110,73,71,106,77)(68,78,107,72,74,111)(89,135,126,93,131,122)(90,123,132,94,127,136)(91,129,128,95,133,124)(92,125,134,96,121,130), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144), (2,8)(3,7)(4,6)(9,144)(10,143)(11,142)(12,141)(13,140)(14,139)(15,138)(16,137)(17,26)(18,25)(19,32)(20,31)(21,30)(22,29)(23,28)(24,27)(33,49)(34,56)(35,55)(36,54)(37,53)(38,52)(39,51)(40,50)(41,45)(42,44)(46,48)(57,86)(58,85)(59,84)(60,83)(61,82)(62,81)(63,88)(64,87)(65,89)(66,96)(67,95)(68,94)(69,93)(70,92)(71,91)(72,90)(73,129)(74,136)(75,135)(76,134)(77,133)(78,132)(79,131)(80,130)(97,120)(98,119)(99,118)(100,117)(101,116)(102,115)(103,114)(104,113)(105,125)(106,124)(107,123)(108,122)(109,121)(110,128)(111,127)(112,126) );

G=PermutationGroup([[(1,82,94,45,68,57),(2,58,69,46,95,83),(3,84,96,47,70,59),(4,60,71,48,89,85),(5,86,90,41,72,61),(6,62,65,42,91,87),(7,88,92,43,66,63),(8,64,67,44,93,81),(9,117,49,106,21,135),(10,136,22,107,50,118),(11,119,51,108,23,129),(12,130,24,109,52,120),(13,113,53,110,17,131),(14,132,18,111,54,114),(15,115,55,112,19,133),(16,134,20,105,56,116),(25,74,139,99,36,123),(26,124,37,100,140,75),(27,76,141,101,38,125),(28,126,39,102,142,77),(29,78,143,103,40,127),(30,128,33,104,144,79),(31,80,137,97,34,121),(32,122,35,98,138,73)], [(1,103,118,5,99,114),(2,115,100,6,119,104),(3,97,120,7,101,116),(4,117,102,8,113,98),(9,39,81,13,35,85),(10,86,36,14,82,40),(11,33,83,15,37,87),(12,88,38,16,84,34),(17,32,48,21,28,44),(18,45,29,22,41,25),(19,26,42,23,30,46),(20,47,31,24,43,27),(49,142,64,53,138,60),(50,61,139,54,57,143),(51,144,58,55,140,62),(52,63,141,56,59,137),(65,108,79,69,112,75),(66,76,105,70,80,109),(67,110,73,71,106,77),(68,78,107,72,74,111),(89,135,126,93,131,122),(90,123,132,94,127,136),(91,129,128,95,133,124),(92,125,134,96,121,130)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144)], [(2,8),(3,7),(4,6),(9,144),(10,143),(11,142),(12,141),(13,140),(14,139),(15,138),(16,137),(17,26),(18,25),(19,32),(20,31),(21,30),(22,29),(23,28),(24,27),(33,49),(34,56),(35,55),(36,54),(37,53),(38,52),(39,51),(40,50),(41,45),(42,44),(46,48),(57,86),(58,85),(59,84),(60,83),(61,82),(62,81),(63,88),(64,87),(65,89),(66,96),(67,95),(68,94),(69,93),(70,92),(71,91),(72,90),(73,129),(74,136),(75,135),(76,134),(77,133),(78,132),(79,131),(80,130),(97,120),(98,119),(99,118),(100,117),(101,116),(102,115),(103,114),(104,113),(105,125),(106,124),(107,123),(108,122),(109,121),(110,128),(111,127),(112,126)]])

54 conjugacy classes

class 1 2A2B2C2D3A3B3C3D4A4B4C4D4E6A6B6C6D6E···6P8A8B8C8D12A···12H12I···12T
order1222233334444466666···6888812···1212···12
size112436222211243622224···4181818182···24···4

54 irreducible representations

dim111111112222222224
type++++++++++++++
imageC1C2C2C2C2C2C2C2S3D4D4D6D6D6C3⋊D4C3⋊D4C4○D8Q8.13D6
kernelC62.74D4C2×C324C8C327D8C329SD16C3211SD16C327Q16C12.59D6C32×C4○D4C3×C4○D4C3×C12C62C2×C12C3×D4C3×Q8C12C2×C6C32C3
# reps111111114114448848

Matrix representation of C62.74D4 in GL6(𝔽73)

7210000
7200000
00727200
001000
00004619
00002727
,
0720000
1720000
00727200
001000
0000720
0000072
,
60430000
30130000
00306000
00304300
00003232
0000570
,
010000
100000
0072000
001100
000010
00007272

G:=sub<GL(6,GF(73))| [72,72,0,0,0,0,1,0,0,0,0,0,0,0,72,1,0,0,0,0,72,0,0,0,0,0,0,0,46,27,0,0,0,0,19,27],[0,1,0,0,0,0,72,72,0,0,0,0,0,0,72,1,0,0,0,0,72,0,0,0,0,0,0,0,72,0,0,0,0,0,0,72],[60,30,0,0,0,0,43,13,0,0,0,0,0,0,30,30,0,0,0,0,60,43,0,0,0,0,0,0,32,57,0,0,0,0,32,0],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,72,1,0,0,0,0,0,1,0,0,0,0,0,0,1,72,0,0,0,0,0,72] >;

C62.74D4 in GAP, Magma, Sage, TeX

C_6^2._{74}D_4
% in TeX

G:=Group("C6^2.74D4");
// GroupNames label

G:=SmallGroup(288,807);
// by ID

G=gap.SmallGroup(288,807);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,120,254,675,185,80,2693,9414]);
// Polycyclic

G:=Group<a,b,c,d|a^6=b^6=d^2=1,c^4=b^3,a*b=b*a,c*a*c^-1=a^-1,d*a*d=a^-1*b^3,c*b*c^-1=d*b*d=b^-1,d*c*d=b^3*c^3>;
// generators/relations

׿
×
𝔽